Вопрос:

13. В прямоугольном треугольнике ABC катет AC = 35 - а высота CH, опущенная на гипотенузу, равна \(\frac{14\sqrt{6}}{6}\). Найдите sin ∠ABC.

Ответ:

Площадь треугольника S = 0.5 * AB * CH = 0.5 * AC * BC. sin (ABC) = AC/AB. Высота CH = \(\frac{AC * BC}{AB}\) = \(\frac{14\sqrt{6}}{6}\). AB = \(\frac{AC * BC}{CH}\) = \(\frac{35 * BC}{\frac{14\sqrt{6}}{6}}\) = \(\frac{35 * 6 * BC}{14\sqrt{6}}\) = \(\frac{15 * BC}{\sqrt{6}}\) sin(ABC) = \(\frac{AC}{AB}\) = \(\frac{35}{\frac{15BC}{\sqrt{6}}}\) = \(\frac{35\sqrt{6}}{15BC}\) = \(\frac{7\sqrt{6}}{3BC}\) AB = \(\sqrt{AC^2 + BC^2}\) = \(\sqrt{35^2 + BC^2}\). Следовательно, \(\frac{15 * BC}{\sqrt{6}}\) = \(\sqrt{35^2 + BC^2}\) = \(\sqrt{1225 + BC^2}\) 225 * \(BC^2\) / 6 = 1225 + \(BC^2\) 37.5 * \(BC^2\) = 1225 + \(BC^2\) 36.5 * \(BC^2\) = 1225 \(BC^2\) = 33.56 BC = 5.79 sin(ABC) = \(\frac{7\sqrt{6}}{3 * 5.79}\) = \(\frac{7\sqrt{6}}{17.37}\) = 0.988 Ответ: 0.99
Убрать каракули
Смотреть решения всех заданий с фото

Похожие