б) $(tg^2 \alpha - sin^2 \alpha)(\frac{1}{sin^2 \alpha} - 1) = (\frac{sin^2 \alpha}{cos^2 \alpha} - sin^2 \alpha)(\frac{1 - sin^2 \alpha}{sin^2 \alpha}) = \frac{sin^2 \alpha - sin^2 \alpha \cdot cos^2 \alpha}{cos^2 \alpha} \cdot \frac{cos^2 \alpha}{sin^2 \alpha} = \frac{sin^2 \alpha(1 - cos^2 \alpha)}{cos^2 \alpha} \cdot \frac{cos^2 \alpha}{sin^2 \alpha} = \frac{sin^2 \alpha \cdot sin^2 \alpha}{cos^2 \alpha} \cdot \frac{cos^2 \alpha}{sin^2 \alpha} = sin^2 \alpha$.
Ответ: $sin^2 \alpha$
Убрать каракули