Умножим обе части уравнения на 12:
$12(\frac{x^2}{4} - \frac{x}{6}) = 12 * 1,75$
$3x^2 - 2x = 21$
$3x^2 - 2x - 21 = 0$
$D = b^2 - 4ac = (-2)^2 - 4 * 3 * (-21) = 4 + 252 = 256$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{2 \pm \sqrt{256}}{2 * 3} = \frac{2 \pm 16}{6}$
$x_1 = \frac{2 + 16}{6} = \frac{18}{6} = 3$
$x_2 = \frac{2 - 16}{6} = \frac{-14}{6} = -\frac{7}{3}$
Ответ: $x_1 = 3$, $x_2 = -\frac{7}{3}$
Убрать каракули