Вопрос:

40. В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер: АВ=8, AD=22, AA1=6. Найдите синус угла между прямыми C1D и АВ.

Ответ:

CD || AB. Угол между C1D и AB равен углу между CD и AB. C1D = \sqrt{CC1^2 + CD^2} = \sqrt{6^2 + 22^2} = \sqrt{36 + 484} = \sqrt{520}. \vec{C1D} = \vec{CD} + \vec{CC1}. cos(AB, C1D) = \frac{\vec{AB} \cdot \vec{C1D}}{|AB||C1D|} = \frac{\vec{AB} \cdot (\vec{CD} + \vec{CC1})}{|AB||C1D|} = \frac{\vec{AB} \cdot \vec{CD}}{|AB||C1D|} = \frac{|\vec{AB}|^2}{|AB||C1D|} = \frac{8^2}{8\sqrt{520}} = \frac{8}{\sqrt{520}}. sin(AB, C1D) = \sqrt{1 - cos^2} = \sqrt{1 - \frac{64}{520}} = \sqrt{\frac{456}{520}} = \frac{\sqrt{456}}{\sqrt{520}} = \frac{\sqrt{237120}}{520}.
Убрать каракули
Смотреть решения всех заданий с фото

Похожие