Вопрос:

37. В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер: АВ=28, AD=16, AA1=12. Найдите синус угла между прямыми DD1 и В1С.

Ответ:

В прямоугольном параллелепипеде DD1 || AA1. B1C = \sqrt{B1B^2 + BC^2} = \sqrt{12^2 + 16^2} = \sqrt{144 + 256} = \sqrt{400} = 20. \vec{B1C} = \vec{BC} - \vec{BB1}. cos(\alpha) = \frac{\vec{AA1} \cdot \vec{B1C}}{|AA1| |B1C|} = \frac{\vec{AA1} \cdot (\vec{BC} - \vec{BB1})}{|AA1| |B1C|} = \frac{-\vec{AA1} \cdot \vec{BB1}}{|AA1| |B1C|} = \frac{-|\vec{AA1}|^2}{|AA1| |B1C|} = \frac{-12^2}{12 * 20} = -\frac{12}{20} = -\frac{3}{5}. sin(\alpha) = \sqrt{1 - cos^2(\alpha)} = \sqrt{1 - (-\frac{3}{5})^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}.
Убрать каракули
Смотреть решения всех заданий с фото

Похожие