Диаметр описанной окружности равен диагонали квадрата. Диагональ квадрата равна стороне квадрата, умноженной на √2. То есть, диагональ равна \(32\sqrt{2} \cdot \sqrt{2} = 32 \cdot 2 = 64\). Радиус окружности равен половине диаметра: \(r = \frac{64}{2} = 32\).
Ответ: 32
Убрать каракули