Угол CBM равен 150 градусам. Следовательно, \(\angle CBA = 180 - 150 = 30\) градусов.
В треугольнике ABC угол ACB равен 90 градусам. Следовательно, \(\angle CAB = 180 - 90 - 30 = 60\) градусов.
\(\sin(\angle CAB) = \frac{CB}{AB}\)
\(\sin(60) = \frac{CB}{18}\)
\(\frac{\sqrt{3}}{2} = \frac{CB}{18}\)
\(CB = 9\sqrt{3}\)
\(\cos(\angle CBA) = \frac{CB}{BM}\)
\(\cos(30) = \frac{9\sqrt{3}}{BM}\)
\(\frac{\sqrt{3}}{2} = \frac{9\sqrt{3}}{BM}\)
\(BM = 18\)
\(\tan(\angle CBA) = \frac{AC}{CB}\)
\(\tan(30) = \frac{AC}{9\sqrt{3}}\)
\(\frac{1}{\sqrt{3}} = \frac{AC}{9\sqrt{3}}\)
\(AC = 9\)
\(\tan(\angle CAB) = \frac{CB}{AC}\)
\(\tan(60) = \frac{9\sqrt{3}}{AC}\)
\(\sqrt{3} = \frac{9\sqrt{3}}{AC}\)
\(AC = 9\)
В треугольнике ACD угол ADC равен 90 градусам.
\(\cos(\angle CAB) = \frac{AD}{AB}\)
\(\cos(60) = \frac{CD}{AC}\)
\(\frac{1}{2} = \frac{CD}{9}\)
\(CD = 4.5\)
Ответ: \(CB = 9\sqrt{3}\), CD = 4.5
Убрать каракули