a) Если $\angle B = 45^\circ$, то $\angle A = 90^\circ - 45^\circ = 45^\circ$. Значит, треугольник равнобедренный, и $BC = AC = 20$.
По теореме Пифагора: $AB = \sqrt{AC^2 + BC^2} = \sqrt{20^2 + 20^2} = \sqrt{400 + 400} = \sqrt{800} = 20\sqrt{2}$.
б) $AC = 10$, $\angle B = 60^\circ$, тогда $\angle A = 30^\circ$.
$\tan B = \frac{AC}{BC}$
$\tan 60^\circ = \frac{10}{BC}$
$\sqrt{3} = \frac{10}{BC}$
$BC = \frac{10}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$
$\sin A = \frac{BC}{AB}$
$\sin 30^\circ = \frac{1}{2} = \frac{BC}{AB}$
$AB = 2 \cdot BC = 2 \cdot \frac{10\sqrt{3}}{3} = \frac{20\sqrt{3}}{3}$
в) $AC = 4\sqrt{3}$, $\angle B = 30^\circ$, тогда $\angle A = 60^\circ$.
$\tan B = \frac{AC}{BC}$
$\tan 30^\circ = \frac{4\sqrt{3}}{BC}$
$\frac{1}{\sqrt{3}} = \frac{4\sqrt{3}}{BC}$
$BC = 4\sqrt{3} \cdot \sqrt{3} = 4 \cdot 3 = 12$
$\sin B = \frac{AC}{AB}$
$\sin 30^\circ = \frac{1}{2} = \frac{4\sqrt{3}}{AB}$
$AB = 2 \cdot 4\sqrt{3} = 8\sqrt{3}$
Убрать каракули