1) a) \[(6y)^2 = 6^2 \cdot y^2 = 36y^2\]
б) \[(\frac{1}{2}a^2)^3 = (\frac{1}{2})^3 \cdot (a^2)^3 = \frac{1}{8}a^6\]
в) \[(0,1c^5)^4 = (0,1)^4 \cdot (c^5)^4 = 0,0001c^{20}\]
2) a) \[(5ax)^3 = 5^3 \cdot a^3 \cdot x^3 = 125a^3x^3\]
б) \[(4ac^4)^3 = 4^3 \cdot a^3 \cdot (c^4)^3 = 64a^3c^{12}\]
в) \[(5x^5y^3)^3 = 5^3 \cdot (x^5)^3 \cdot (y^3)^3 = 125x^{15}y^9\]
3) a) \[(- \frac{1}{3}xy)^4 = (- \frac{1}{3})^4 \cdot x^4 \cdot y^4 = \frac{1}{81}x^4y^4\]
б) \[(-10x^2y^6)^3 = (-10)^3 \cdot (x^2)^3 \cdot (y^6)^3 = -1000x^6y^{18}\]
в) \[(-a^2b^3c^4)^7 = (-1)^7 \cdot (a^2)^7 \cdot (b^3)^7 \cdot (c^4)^7 = -a^{14}b^{21}c^{28}\]
4) a) \[-(3a^2b)^3 = - (3^3 \cdot (a^2)^3 \cdot b^3) = -27a^6b^3\]
б) \[-(-2ab^4)^3 = -((-2)^3 \cdot a^3 \cdot (b^4)^3) = -(-8a^3b^{12}) = 8a^3b^{12}\]
в) \[-(-a^3b^2c)^4 = -((-1)^4 \cdot (a^3)^4 \cdot (b^2)^4 \cdot c^4) = -(a^{12}b^8c^4) = -a^{12}b^8c^4\]
Убрать каракули