\[\cos\alpha = - \frac{1}{2};\ \ \ \]
\[\frac{\pi}{2} < \alpha < \pi \Longrightarrow \sin\alpha > 0;\ \ \ \]
\[tg\alpha < 0.\]
\[\sin\alpha = \sqrt{1 - \cos^{2}\alpha} =\]
\[= \sqrt{1 - \left( - \frac{1}{2} \right)^{2}} = \sqrt{1 - \frac{1}{4}} =\]
\[= \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}\]
\[tg\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{\sqrt{3}}{2}\ :\left( - \frac{1}{2} \right) =\]
\[= - \sqrt{3}.\]