Контрольные задания > 12. В основании треугольной пирамида SABC лежит равносторонний треугольник ABC. Точка O - центр треугольника ABC. Отрезок SE перпендикулярен плоскости основания. Выберите из предложенного списка пары перпендикулярных прямых.
1) прямые SB и CA
2) прямые AB и SC
3) прямые SA и BE
4) прямые SE и FA
В ответе запишите номера выбранных пар прямых без пробелов, запятых и других дополнительных символов.
Вопрос:
12. В основании треугольной пирамида SABC лежит равносторонний треугольник ABC. Точка O - центр треугольника ABC. Отрезок SE перпендикулярен плоскости основания. Выберите из предложенного списка пары перпендикулярных прямых.
1) прямые SB и CA
2) прямые AB и SC
3) прямые SA и BE
4) прямые SE и FA
В ответе запишите номера выбранных пар прямых без пробелов, запятых и других дополнительных символов.
Ответ:
Так как SE перпендикулярна плоскости ABC, то SE перпендикулярна любой прямой, лежащей в этой плоскости. FA лежит в плоскости ABC, значит SE перпендикулярна FA.
В равностороннем треугольнике ABC медиана BE является также высотой. SA не перпендикулярна BE, так как пирамида не является правильной (то есть боковые ребра не равны ребрам основания).
Рассмотрим варианты:
1) SB и CA - не перпендикулярны, т.к. пирамида не симметрична относительно SB.
2) AB и SC - не перпендикулярны, т.к. пирамида не симметрична относительно AB.
3) SA и BE - не перпендикулярны, т.к. пирамида не симметрична относительно SA и BE.
4) SE и FA - перпендикулярны, т.к. SE перпендикулярна плоскости ABC, а FA лежит в этой плоскости.
Таким образом, только прямые SE и FA перпендикулярны.
**Ответ: 4**