\[x + 6;\ \ \sqrt{5x};\ \ x - 2\]
\[\frac{\sqrt{5x}}{x + 6} = \frac{x - 2}{\sqrt{5x}}\]
\[\frac{(x - 2)(x + 6) - 5x}{\sqrt{5x}(x + 6)} = 0\ \ \ \ \ \ \ \ \]
\[x > 0;\ \ \ \ x
eq - 6\]
\[(x - 2)(x + 6) - 5x = 0\]
\[x^{2} + 6x - 2x - 12 - 5x = 0\]
\[x^{2} - x - 12 = 0\]
\[x_{1} = - 3\ (не\ подходит);\ \ \ \]
\[x_{2} = 4.\]
\[Ответ:4.\]