\[\sqrt{5x + 16} = x + 2\]
\[5x + 16 = (x + 2)^{2}\]
\[x^{2} + 4x + 4 - 5x - 16 = 0\]
\[x^{2} - x - 12 = 0\]
\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 12\]
\[x_{1} = 4;\ \ \ x_{2} = - 3\]
\[Проверка.\]
\[x = 4:\]
\[\sqrt{20 + 16} = 4 + 2\]
\[\sqrt{36} = 6\]
\[6 = 6\]
\[x = 4 - корень\ уравнения.\]
\[x = - 3:\]
\[\sqrt{- 15 + 16} = - 3 + 2\]
\[1 \neq - 1\]
\[x = - 3\ не\ является\ корнем\ \]
\[уравнения.\]
\[Ответ:x = 4.\]