\[\sqrt[6]{x^{2} + 5x - 1} = \sqrt[6]{x + 4}\]
\[x^{2} + 5x - 1 = x + 4\]
\[x^{2} + 4x - 5 = 0\]
\[x_{1} + x_{2} = - 4;\ \ \ x_{1} \cdot x_{2} = - 5\]
\[x_{1} = - 5;\ \ \ x_{2} = 1\]
\[Проверка.\]
\[x = - 5:\]
\[\sqrt[6]{25 - 25 - 1} = \sqrt[6]{- 5 + 4}\]
\[\sqrt[6]{- 1} = \sqrt[6]{- 1}\]
\[не\ существует;\]
\[x = - 5\ не\ является\ корнем.\]
\[x = 1:\]
\[\sqrt[6]{1 + 5 - 1} = \sqrt[6]{1 + 4}\]
\[\sqrt[6]{5} = \sqrt[6]{5}\]
\[x = 1 - корень\ уравнения.\]
\[Ответ:x = 1.\]