\[\sqrt{3x + 8} = x - 2\]
\[3x + 8 = (x - 2)^{2}\]
\[3x + 8 = x^{2} - 4x + 4\]
\[x^{2} - 7x - 4 = 0\]
\[D = 49 + 16 = 65\]
\[x_{1} = \frac{7 + \sqrt{65}}{2} > 0 - корень\ \]
\[уравнения.\ \ \]
\[x_{2} = \frac{7 - \sqrt{65}}{2}\]
\[Проверим\ x = \frac{7 - \sqrt{65}}{2}:\]
\[\sqrt{3 \cdot \frac{7 - \sqrt{65}}{2} + 8^{\backslash 2}} =\]
\[= \frac{7 - \sqrt{65}}{2} - 2^{\backslash 2}\]
\[\sqrt{\frac{21 - 3\sqrt{65} + 16}{2}} =\]
\[= \frac{7 - \sqrt{65} - 4}{2}\]
\[\sqrt{\frac{37 - 3\sqrt{65}}{2}} \neq \frac{3 - \sqrt{65}}{2}\]
\[Ответ:x = \frac{7 + \sqrt{65}}{2}.\]