Вопрос:

Пусть х1 и х2 – корни квадратного уравнения 3х2 – 4x – 2 = 0. Составьте квадратное уравнение, корнями которого являются числа 2/х1 и 2/х2.

Ответ:

\[3x^{2} - 4x - 2 = 0\]

\[x^{2} - \frac{4}{3x} - \frac{2}{3} = 0\]

\[x_{1} + x_{2} = \frac{4}{3};\ \ \ \ \ \ \ \ x_{1}x_{2} = - \frac{2}{3}\]

\[\frac{2}{x_{1}} + \frac{2}{x_{2}} = \frac{2x_{1} + 2x_{2}\ }{x_{1}x_{2}} =\]

\[= \frac{2 \cdot \left( x_{1} + x_{2} \right)}{x_{1}x_{2}} = \frac{2 \cdot \frac{4}{3}}{- \frac{2}{3}} =\]

\[= - \frac{2 \cdot 4 \cdot 3}{3 \cdot 2} = - 4.\]

\[\frac{2}{x_{1}} \cdot \frac{2}{x_{2}} = \frac{4}{x_{1}x_{2}} = \frac{4}{- \frac{2}{3}} = - \frac{4 \cdot 3}{2} =\]

\[= - 6.\]

Похожие