\[x^{2} + mx - 11 = 0;\ \ x_{1} = - x_{2}\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = - m\ \ \ \ (2) \\ x_{1} \cdot x_{2} = - 11\ \ \ \ \ (1) \\ \end{matrix} \right.\ \]
\[(1) - x_{2} \cdot x_{2} = - 11\]
\[- x_{2}^{2} = - 11\]
\[x_{2}^{2} = 11\]
\[x_{2} = \pm \sqrt{11}.\]
\[(2)\ x_{1} = \pm \sqrt{11}\]
\[- x_{2} + x_{2} = - m\]
\[0 = - m \Longrightarrow m = 0.\]
\[Ответ:\ \ m = 0;\ \ x_{1} = \sqrt{11};\ \ \ \]
\[x_{2} = - \sqrt{11}.\]