\[x^{2} + ax + 16 = 0;\ \ x_{1} = 4x_{2}\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = - a\ \ \ \ (1) \\ x_{1} \cdot x_{2} = 16\ \ \ \ \ \ \ (2) \\ \end{matrix} \right.\ \]
\[(1)\ 4x_{2} + x_{2} = - a\]
\[5x_{2} = - a\]
\[a = - 5x_{2}.\]
\[(2)\ 4x_{2} \cdot x_{2} = 16\]
\[4x_{2}^{2} = 16\]
\[x_{2}^{2} = 4\]
\[x_{2} = \pm 2.\]
\[x_{1} = 4 \cdot ( \pm 2) = \pm 8.\]
\[a = - 5 \cdot ( \pm 2) = \pm 10.\]
\[Ответ:\ x_{1} = 8,\ x_{2} = 2,\ a = - 10;\ \]
\[x_{1} = - 8,\ \ \ x_{2} = - 2,\ \ \ a = 10.\]