Вопрос:

Найдите сумму четырёх первых членов геометрической прогрессии (bn) со знаменателем q, если: b1=корень из 3, b5=9*корень из 3, q>0.

Ответ:

\[b_{1} = \sqrt{3};\ \ b_{5} = 9\sqrt{3};\ \ q > 0:\]

\[b_{5} = b_{1} \cdot q^{4}\ \]

\[q^{4} = \frac{b_{5}}{b_{1}} = \frac{9\sqrt{3}}{\sqrt{3}} = 9\ \ \]

\[q^{2} = 3\]

\[q = \sqrt{3}.\]

\[S_{4} = \frac{\sqrt{3} \cdot (9 - 1)}{\sqrt{3} - 1} = \frac{8\sqrt{3}}{\sqrt{3} - 1} =\]

\[= \frac{8\sqrt{3}\left( \sqrt{3} + 1 \right)}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)} =\]

\[= \frac{24 + 8\sqrt{3}}{3 - 1} = \frac{24 + 8\sqrt{3}}{2} =\]

\[= 12 + 4\sqrt{3}.\]


Похожие