\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[BD - биссектриса\ \angle B.\]
\[Доказать:\]
\[\frac{\text{AD}}{\text{CD}} = \frac{\sin{\angle C}}{\sin{\angle A}}.\]
\[Доказательство.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle ABD = \angle CBD = \frac{1}{2}\angle B.\]
\[2)\ В\ \mathrm{\Delta}ABD:\]
\[\frac{\text{AD}}{\sin{\angle ABD}} = \frac{\text{BD}}{\sin{\angle A}}\]
\[BD = \frac{AD \bullet \sin{\angle A}}{\sin\left( \frac{1}{2}\angle B \right)}.\]
\[3)\ В\ \mathrm{\Delta}CBD:\]
\[\frac{\text{CD}}{\sin{\angle CBD}} = \frac{\text{BD}}{\sin{\angle C}}\]
\[BD = \frac{CD \bullet \sin{\angle C}}{\sin\left( \frac{1}{2}\angle B \right)};\]
\[AD \bullet \sin{\angle A} = CD \bullet \sin{\angle C};\]
\[AD\ :CD = \sin{\angle C}\ :\sin{\angle A}.\]
\[Что\ и\ требовалось\ доказать.\]