\[Схематический\ рисунок.\]
\[Дано:\]
\[\angle A = \alpha;\]
\[\angle B = \beta;\]
\[\angle ADB = \varphi;\]
\[AD = m.\]
\[Найти:\]
\[\text{BC.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABD:\]
\[\angle ADC = 180{^\circ} - \angle ADB =\]
\[= 180{^\circ} - \varphi;\]
\[\sin{\angle ADC} = \sin(180{^\circ} - \varphi) =\]
\[= \sin\varphi.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[\angle C = 180{^\circ} - \angle A - \angle B =\]
\[= 180{^\circ} - \alpha - \beta;\]
\[\sin{\angle C} = \sin(180{^\circ} - \alpha - \beta) =\]
\[= \sin(\alpha + \beta).\]
\[3)\ В\ \mathrm{\Delta}ACD:\]
\[\frac{\text{AC}}{\sin{\angle ADC}} = \frac{\text{AD}}{\sin{\angle ACD}}\]
\[AC = \frac{AD \bullet \sin{\angle ADC}}{\sin{\angle ACD}} =\]
\[= \frac{m\sin\varphi}{\sin(\alpha + \beta)}.\]
\[4)\ В\ \mathrm{\Delta}ABC:\]
\[\frac{\text{BC}}{\sin{\angle A}} = \frac{\text{AC}}{\sin{\angle B}}\]
\[BC = \frac{AC \bullet \sin{\angle A}}{\sin{\angle B}} =\]
\[= \frac{m\sin\alpha\sin\varphi}{\sin\beta\sin(\alpha + \beta)}.\]
\[Ответ:\ \ \frac{m\sin\alpha\sin\varphi}{\sin\beta\sin(\alpha + \beta)}.\]