\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[\angle AMC = \varphi;\]
\[AB = c;\]
\[\angle A = \alpha;\]
\[\angle ACB = \gamma.\]
\[Найти:\]
\[\text{CM.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\frac{\text{AB}}{\sin{\angle ACB}} = \frac{\text{BC}}{\sin{\angle A}};\]
\[BC = \frac{AB \bullet \sin{\angle A}}{\sin{\angle ACB}} = \frac{c\sin\alpha}{\sin\gamma};\]
\[\angle BMC = 180{^\circ} - \angle AMC =\]
\[= 180{^\circ} - \varphi;\]
\[\sin{\angle BMC} = \sin(180{^\circ} - \varphi) = \sin\varphi;\]
\[\angle B = 180{^\circ} - \angle A - \angle C =\]
\[= 180{^\circ} - \alpha - \gamma;\]
\[\sin{\angle B} = \sin(180{^\circ} - \alpha - \gamma) =\]
\[= \sin(a + \gamma).\]
\[2)\ В\ \mathrm{\Delta}BMC:\]
\[\frac{\text{BC}}{\sin{\angle BMC}} = \frac{\text{CM}}{\sin{\angle MBC}}\]
\[CM = \frac{BC \bullet \sin{\angle MBC}}{\sin{\angle BMC}} =\]
\[= \frac{c\sin\alpha\sin(a + \gamma)}{\sin\gamma\sin\varphi}.\]
\[Ответ:\ \ \frac{c\sin\alpha\sin(a + \gamma)}{\sin\gamma\sin\varphi}.\]