\[Рисунок\ в\ учебнике.\]
\[Дано:\]
\[BD = m;\]
\[\angle ABC = \alpha;\]
\[\angle ADC = \beta.\]
\[Найти:\]
\[\text{AC.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle ABD = 180{^\circ} - \angle B = 180{^\circ} - \alpha.\]
\[2)\ В\ \mathrm{\Delta}ABD:\]
\[\angle BAD = 180{^\circ} - \angle ABD - \angle ADB\]
\[\angle BAD = \alpha - \beta;\]
\[\frac{\text{BD}}{\sin{\angle BAD}} = \frac{\text{AB}}{\sin{\angle ADB}}\]
\[AB = \frac{BD \bullet \sin{\angle ADB}}{\sin{\angle BAD}} =\]
\[= \frac{m\sin\beta}{\sin(\alpha - \beta)}.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[\angle C = 90{^\circ};\ \ \ \]
\[\sin{\angle B} = \frac{\text{AC}}{\text{AB}};\]
\[AC = AB \bullet \sin{\angle B} = \frac{m\sin\alpha\sin\beta}{\sin(\alpha - \beta)}.\]
\[Ответ:\ \ \frac{m\sin\alpha\sin\beta}{\sin(\alpha - \beta)}.\]