\[Рисунок\ в\ учебнике.\]
\[Дано:\]
\[CD = a;\]
\[\angle BAC = \gamma;\]
\[\angle DBA = \beta.\]
\[Найти:\]
\[\text{AD.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABD:\]
\[\angle D = 180{^\circ} - \angle A - \angle B =\]
\[= 180{^\circ} - \gamma - \beta;\]
\[\angle CDB = 180{^\circ} - \angle D = \gamma + \beta.\]
\[2)\ В\ \mathrm{\Delta}BCD:\]
\[\angle C = 90{^\circ};\ \ \ \]
\[\cos{\angle CDB} = \frac{\text{CD}}{\text{BD}};\]
\[BD = \frac{\text{CD}}{\cos{\angle CDB}} = \frac{a}{\cos(\beta + \gamma)}.\]
\[3)\ В\ \mathrm{\Delta}ABD:\]
\[\frac{\text{AD}}{\sin{\angle B}} = \frac{\text{BD}}{\sin{\angle A}}\]
\[AD = \frac{BD \bullet \sin{\angle B}}{\sin{\angle A}}\]
\[AD = \frac{a\sin\beta}{\cos{(\beta + \gamma)\sin\gamma}}.\]
\[Ответ:\ \ \frac{a\sin\beta}{\cos{(\beta + \gamma)\sin\gamma}}.\]