\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[BC = a;\]
\[\angle A = \alpha;\]
\[\angle C = \gamma.\]
\[Найти:\]
\[AB;\ AC.\]
\[Решение.\]
\[\angle B = 180{^\circ} - (\angle A + \angle C)\]
\[\sin{\angle B} = \sin(\angle A + \angle C);\]
\[\frac{\text{BC}}{\sin{\angle A}} = \frac{\text{AB}}{\sin{\angle C}} = \frac{\text{AC}}{\sin{\angle B}}\]
\[AB = \frac{BC \bullet \sin{\angle C}}{\sin{\angle A}} = \frac{a\sin\gamma}{\sin\alpha}\]
\[AC = \frac{BC \bullet \sin{\angle B}}{\sin{\angle A}} = \frac{a\sin(\alpha + \gamma)}{\sin\alpha}.\]
\[Ответ:\ \ \frac{a\sin\gamma}{\sin\alpha};\ \frac{a\sin(\alpha + \gamma)}{\sin\alpha}.\]