\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[\angle BAC = \alpha;\]
\[\angle DAC = \beta;\]
\[AC = d.\]
\[Найти:\]
\[AB;\ AD.\]
\[Решение\]
\[1)\ \angle A = \angle BAC + \angle DAC = \alpha + \beta;\]
\[\angle B = 180{^\circ} - \angle A = 180{^\circ} - \alpha - \beta\]
\[\sin{\angle D} = \sin{\angle B} = \sin(\alpha + \beta).\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[\frac{\text{AC}}{\sin{\angle B}} = \frac{\text{BC}}{\sin{\angle BAC}}\]
\[\frac{d}{\sin(\alpha + \beta)} = \frac{\text{BC}}{\sin\alpha}\]
\[AD = BC = \frac{d\sin\alpha}{\sin(\alpha + \beta)}.\]
\[3)\ В\ \mathrm{\Delta}ADC:\]
\[\frac{\text{AC}}{\sin{\angle D}} = \frac{\text{CD}}{\sin{\angle DAC}}\]
\[\frac{d}{\sin(\alpha + \beta)} = \frac{\text{CD}}{\sin\beta}\]
\[AB = CD = \frac{d\sin\beta}{\sin(\alpha + \beta)}.\]
\[Ответ:\ \ \frac{d\sin\alpha}{\sin(\alpha + \beta)};\ \frac{d\sin\beta}{\sin(\alpha + \beta)}.\]