\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[BE - биссектриса\ \angle B;\]
\[\angle BEA = \angle BAD.\]
\[Найти:\]
\[\angle A;\ \angle B.\]
\[Решение:\]
\[1)\ В\ \mathrm{\Delta}ABE:\]
\[\angle A + \angle ABE + \angle E = 180{^\circ}\]
\[\angle A + \angle ABE + \angle A = 180{^\circ}\]
\[\angle ABE = 180{^\circ} - 2\angle A.\]
\[2)\ В\ \ ABCD:\]
\[\angle ABC = 2\angle ABE;\]
\[180{^\circ} - \angle A = 360{^\circ} - 4\angle A\]
\[3\angle A = 180{^\circ}\ \ \ \]
\[\angle A = 60{^\circ}.\]
\[\angle B = 2 \bullet 60{^\circ} = 120{^\circ}.\]
\[Ответ:\ \ 60{^\circ};\ 120{^\circ}.\]