\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[CM - медиана;\]
\[BC = a;\ \]
\[AC = b;\]
\[AB = c;\ \]
\[CM = m_{c}.\]
\[Доказать:\]
\[m_{c} = \frac{\sqrt{2a^{2} + 2b^{2} - c^{2}}}{2}.\]
\[Доказательство.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[AM = \frac{1}{2}AB = \frac{1}{2}c;\]
\[a^{2} = c^{2} + b^{2} - 2cb \bullet \cos{\angle A}\]
\[2cb \bullet \cos{\angle A} = c^{2} + b^{2} - a^{2}\]
\[\cos{\angle A} = \frac{c^{2} + b^{2} - a^{2}}{2cb}.\]
\[2)\ В\ \mathrm{\Delta}ACM:\]
\[4m_{c}^{2} = 2b^{2} + 2a^{2} - c^{2}\]
\[m_{c}^{2} = \frac{1}{4}\left( 2b^{2} + 2a^{2} - c^{2} \right)\]
\[m_{c} = \frac{1}{2}\sqrt{2b^{2} + 2a^{2} - c^{2}}.\]
\[Что\ и\ требовалось\ доказать.\]