\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равнобедренный;\]
\[AC = 4\sqrt{2}\ см;\]
\[AM - медиана;\]
\[AM = 5\ см.\]
\[Найти:\]
\[\text{AB.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[AB = BC;\ \ \ \]
\[BM = \frac{1}{2}BC = \frac{1}{2}AB;\]
\[AB^{2} - AB^{2} \bullet \cos{\angle B} = 16\]
\[AB^{2} \bullet \cos{\angle B} = AB^{2} - 16\]
\[\cos{\angle B} = 1 - \frac{16}{AB^{2}}.\]
\[2)\ В\ \mathrm{\Delta}ABM:\]
\[\frac{5}{4}AB^{2} - AB^{2} + 16 = 25\]
\[\frac{1}{4}AB^{2} = 9\ \ \]
\[AB^{2} = 36\]
\[AB = 6\ см.\]
\[Ответ:\ \ 6\ см.\]