\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - ранобедренный;\]
\[AC = 5\ см;\]
\[AB = BC = 20\ см;\]
\(AD - биссектриса\ \angle A.\)
\[Найти:\]
\[\text{AD.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\frac{\text{BD}}{\text{CD}} = \frac{\text{AB}}{\text{AC}} = \frac{20}{5} = 4\ \ \ \]
\[BD = 4CD;\]
\[BC = BD + CD = 4CD + CD = 20\]
\[5CD = 20\ \ \ \]
\[CD = 4\ см.\]
\[400 = 25 + 400 - 2 \bullet 5 \bullet 20 \bullet \cos{\angle C}\]
\[200\cos{\angle C} = 25\ \ \ \]
\[\cos{\angle C} = \frac{1}{8}.\]
\[2)\ В\ \mathrm{\Delta}ADC:\]
\[AD^{2} = 25 + 16 - 2 \bullet 5 \bullet 4 \bullet \frac{1}{8}\]
\[AD^{2} = 41 - 5 = 36;\ \ \ \]
\[AD = 6\ см.\]
\[Ответ:\ \ 6\ см.\]