\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[AB = 11\ см;\]
\[AD = 23\ см;\]
\[BD\ :AC = 2\ :3.\]
\[Найти:\]
\[BD;\ AC.\]
\[Решение.\]
\[1)\ \angle B = 180{^\circ} - \angle A;\]
\[\cos{\angle B} = - \cos{\angle A};\]
\[BC = AD = 23\ см.\]
\[2)\ В\ \mathrm{\Delta}ABD:\]
\[= 121 + 529 - 2 \bullet 11 \bullet 23 \bullet \cos{\angle A} =\]
\[= 650 - 506\cos{\angle A};\]
\[\cos{\angle A} = \frac{650 - BD^{2}}{506}.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[= 650 - BD^{2} + 650\]
\[\left( \frac{3}{2}\text{BD} \right)^{2} = 1300 - BD^{2}\]
\[\frac{9}{4}BD^{2} = 1300 - BD^{2}\]
\[\frac{13}{4}BD^{2} = 1300\]
\[BD^{2} = 400\ \ \ \]
\[BD = 20\ см.\]
\[AC = \frac{3}{2} \bullet 20 = 30\ см.\]
\[Ответ:\ \ 20\ см;\ 30\ см.\]