\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[BD = 8\ см;\]
\[AC = 14\ см;\]
\[AB = AD + 2\ см.\]
\[Найти:\]
\[AB;\ AD.\]
\[1)\ AO = \frac{1}{2}AC = 7\ см;\ \ \ \]
\[DO = BO = \frac{1}{2}BD = 4\ см.\]
\[2)\ В\ \mathrm{\Delta}AOD:\]
\[= 49 + 16 - 2 \bullet 7 \bullet 4 \bullet \cos{\angle AOD} =\]
\[= 65 - 56 \bullet \cos{\angle AOD}\]
\[\cos{\angle AOD} = \frac{65 - AD^{2}}{56};\]
\[\angle BOA = 180{^\circ} - \cos{\angle AOD}\]
\[\cos{\angle BOA} = - \cos{\angle AOD} =\]
\[= \frac{AD^{2} - 65}{56}.\]
\[3)\ В\ \mathrm{\Delta}AOB:\]
\[= 49 + 16 - 2 \bullet 7 \bullet 4 \bullet \frac{AD^{2} - 65}{56}\]
\[(AD + 2)^{2} = 65 - AD^{2} + 65\]
\[AD^{2} + 4AD + 4 = 130 - AD^{2}\]
\[2AD^{2} + 4AD - 126 = 0\]
\[AD^{2} + 2AD - 63 = 0\]
\[D = 2^{2} + 4 \bullet 63 = 4 + 252 = 256\]
\[AD_{1} = \frac{- 2 - 16}{2} = - 9;\]
\[AD_{2} = \frac{- 2 + 16}{2} = 7\ см.\]
\[AB_{1} = - 9 + 2 = - 7;\]
\[AB_{2} = 7 + 2 = 9\ см.\]
\[Ответ:\ \ 7\ см;\ 9\ см.\]