\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[AC = 13\ см;\]
\[BD = 11\ см;\]
\[AD = 9\ см.\]
\[Найти:\]
\[P_{\text{ABCD}}.\]
\[Решение.\]
\[1)\ AO = \frac{1}{2}AC = 6,5;\ \ \ \]
\[DO = BO = \frac{1}{2}BD = 5,5.\]
\[2)\ В\ \mathrm{\Delta}AOD:\]
\[71,5\cos{\angle AOD} = - 8,5\ \ \]
\[\cos{\angle AOD} = - \frac{17}{143};\]
\[\angle BOA = 180{^\circ} - \angle AOD\]
\[\cos{\angle BOA} = - \cos{\angle AOD} = \frac{17}{143}.\]
\[3)\ В\ \mathrm{\Delta}AOB:\]
\[= 42,25 + 30,25 - 2 \bullet 6,5 \bullet 5,5 \bullet \frac{17}{143} =\]
\[= 72,5 - 8,5 = 64;\ \ \ \]
\[AB = 8\ см.\]
\[4)\ P_{\text{ABCD}} = 2AB + 2AD =\]
\[= 16 + 18 = 34\ см.\]
\[Ответ:\ \ 34\ см.\]