\[Схематический\ рисунок.\]
\[Дано:\]
\[O - центр\ впис.\ окружности;\]
\[BC = a;\ \]
\[AC = b;\]
\[\angle AOB = 120{^\circ}.\]
\[Найти:\]
\[\text{AB.}\]
\[Решение:\]
\[1)\ В\ \mathrm{\Delta}AOB:\]
\[\angle OAB + \angle OBA =\]
\[= 180{^\circ} - \angle AOB = 60{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[O - центр\ впис.\ окружности;\]
\[AO - биссектриса\ \angle BAC;\]
\[BO - биссектриса\ \angle ABC;\]
\[\angle C = 180{^\circ} - (\angle A + \angle B) =\]
\[= 180{^\circ} - 2(\angle AOB + \angle OBA) =\]
\[= 180{^\circ} - 2 \bullet 60{^\circ} =\]
\[= 180{^\circ} - 120{^\circ} = 60{^\circ};\]
\[AB^{2} =\]
\[= AC^{2} + BC^{2} - 2AC \bullet BC \bullet \cos{\angle C} =\]
\[= b^{2} + a^{2} - 2ba \bullet \cos{60{^\circ}} =\]
\[= b^{2} + a^{2} - 2ba \bullet \frac{1}{2} =\]
\[= a^{2} + b^{2} - ab;\]
\[AB = \sqrt{a^{2} + b^{2} - ab}.\]
\[Ответ:\ \ \sqrt{a^{2} + b^{2} - ab}.\]