\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равносторонний;\]
\[AD\ :BD = 2\ :1;\]
\[AB = 6\ см.\]
\[Найти:\]
\[\text{CD.}\]
\[Решение:\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[AC = AB = 6;\ \ \ \]
\[\angle A = 60{^\circ};\]
\[AD = \frac{2}{1 + 2} \bullet AB = \frac{2}{3}AB = 4\ см.\]
\[2)\ В\ \mathrm{\Delta}ADC:\]
\[CD^{2} =\]
\[= AD^{2} + AC^{2} - 2AD \bullet AC \bullet \cos{\angle A} =\]
\[= 16 + 36 - 2 \bullet 4 \bullet 6 \bullet \cos{60{^\circ}} =\]
\[= 52 - 48 \bullet \frac{1}{2} = 52 - 24 = 28;\]
\[CD = \sqrt{28} = 2\sqrt{7}\ см.\]
\[Ответ:\ \ 2\sqrt{7}\ см.\]