\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - трапеция;\]
\[BC = 3\ см;\]
\[AD = 10\ см;\]
\[CD = 4\ см;\]
\[\angle D = 60{^\circ}.\]
\[Найти:\]
\[AC;\ BD.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ACD:\]
\[AC^{2} =\]
\[= AD^{2} + CD^{2} - 2AD \bullet CD \bullet \cos{\angle D} =\]
\[= 100 + 16 - 2 \bullet 10 \bullet 4 \bullet \cos{60{^\circ}} =\]
\[= 116 - 80 \bullet \frac{1}{2} = 116 - 40 = 76;\]
\[AC = \sqrt{76} = 2\sqrt{19}\ см.\]
\[2)\ В\ ABCD:\]
\[\angle C = 180{^\circ} - \angle D = 120{^\circ}.\]
\[3)\ В\ \mathrm{\Delta}BCD:\]
\[BD^{2} =\]
\[= BC^{2} + CD^{2} - 2BC \bullet CD \bullet \cos{\angle C} =\]
\[= 9 + 16 - 2 \bullet 3 \bullet 4 \bullet \cos{120{^\circ}} =\]
\[= 25 + 24 \bullet \frac{1}{2} = 25 + 12 = 37;\]
\[BD = \sqrt{37}\ см.\]
\[Ответ:\ \ 2\sqrt{19}\ см;\ \sqrt{37}\ см.\]