\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - прямоугольник;\]
\[AM\ :BM = 1\ :3;\]
\[AC = BC = 4\ см.\]
\[Найти:\]
\[\text{CM.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[\angle C = 90{^\circ};\ \ \]
\[\angle A = \angle B = 45{^\circ};\]
\[AB = \sqrt{AC^{2} + BC^{2}} =\]
\[= \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}\ см;\]
\[AM = \frac{1}{1 + 3} \bullet AB = \frac{1}{4}AB = \sqrt{2}\ см.\]
\[2)\ В\ \mathrm{\Delta}AMC:\]
\[CM^{2} =\]
\[= AM^{2} + AC^{2} - 2AM \bullet AC \bullet \cos{\angle A} =\]
\[= 2 + 16 - 2 \bullet \sqrt{2} \bullet 4 \bullet \cos{45{^\circ}} =\]
\[= 18 - 8\sqrt{2} \bullet \frac{\sqrt{2}}{2} = 18 - 8 = 10;\]
\[CM = \sqrt{10}\ см.\]
\[Ответ:\ \ \sqrt{10}\ см.\]