\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[AB = 2\sqrt{2}\ см;\]
\[AD = 5\ см;\]
\[\angle A = \angle C = 45{^\circ}.\]
\[Найти:\]
\[AC;\ BD.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABD:\]
\[BD^{2} =\]
\[= AB^{2} + AD^{2} - 2AB \bullet AD \bullet \cos{\angle A};\]
\[= 8 + 25 - 2 \bullet 2\sqrt{2} \bullet 5 \bullet \cos{45{^\circ}} =\]
\[= 33 - 20\sqrt{2} \bullet \frac{\sqrt{2}}{2} =\]
\[= 33 - 20 = 13.\]
\[BD = \sqrt{13}\ см.\]
\[2)\ В\ ABCD:\]
\[\angle B = 180{^\circ} - \angle A = 135{^\circ};\]
\[BC = AD = 5\ см.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[AC^{2} =\]
\[= AB^{2} + BC^{2} - 2AB \bullet BC \bullet \cos{\angle B} =\]
\[= 8 + 25 - 2 \bullet 2\sqrt{2} \bullet 5 \bullet \cos{135{^\circ}} =\]
\[= 33 + 20\sqrt{2} \bullet \frac{\sqrt{2}}{2} =\]
\[= 33 + 20 = 53.\]
\[AC = \sqrt{53}.\]
\[Ответ:\ \ \sqrt{13}\ см;\ \sqrt{53}\ см.\]