\[Стороны\ треугольника:\]
\[a = \sqrt{18}\ см;\ b = 5\ см;\ c = 7\ см.\]
\[Решение.\]
\[По\ теореме\ косинусов:\]
\[b^{2} = a^{2} + c^{2} - 2ac \bullet \cos{\angle b}\]
\[25 = 18 + 49 - 2 \bullet \sqrt{18} \bullet 7 \bullet \cos{\angle c}\]
\[14 \bullet 3\sqrt{2} \bullet \cos{\angle c} = 42\ \ \ \]
\[\cos{\angle c} = \frac{\sqrt{2}}{2}\]
\[\angle c = \arccos\frac{\sqrt{2}}{2} = 45{^\circ}.\]
\[Ответ:\ \ 45{^\circ}.\]