\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - квадрат;\]
\[R_{окр} = AB = a.\]
\[Найти:\]
\[P_{\text{MNKP}}.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}AND:\]
\[AN = AD = DN = R.\]
\[Згачит:\]
\[\mathrm{\Delta}AND - равносторонний.\]
\[Отсюда:\]
\[\angle A = \angle N = \angle D = 60{^\circ}.\]
\[2)\ ABCD - квадрат:\]
\[\angle BAN = 90{^\circ} - \angle DAN = 30{^\circ}.\]
\[3)\ Из\ симметрии:\]
\[\angle DAK = 30{^\circ}.\]
\[4)\ В\ ABCD:\]
\[\angle NAK = 90{^\circ} - \angle BAN - \angle DAK =\]
\[= 90{^\circ} - 30{^\circ} - 30{^\circ} = 30{^\circ}.\]
\[L_{\text{NK}} = \frac{\angle NAK \bullet \pi R}{180{^\circ}} = \frac{30{^\circ} \bullet \pi a}{180{^\circ}} = \frac{\pi a}{6}.\]
\[P_{\text{MNKP}} = 4 \bullet L_{\text{NK}} = 4 \bullet \frac{\pi a}{6} = \frac{2\pi a}{3}.\]
\[Ответ:\ \ \frac{2\pi a}{3}.\]