\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - квадрат;\]
\[R_{окр} = AB = a.\]
\[Найти:\]
\[8S_{\text{BF}}.\]
\[Решение.\]
\[1)\ ABCD - квадрат:\]
\[AC \cap BD = F;\]
\[EF\bot AB;\ \ \ E \in AB;\]
\[AE = BE = EF = \frac{1}{2}AB = \frac{a}{2}.\]
\[2)\ В\ \mathrm{\Delta}BEF:\]
\[S_{\text{BEF}} = \frac{1}{2} \bullet BE \bullet EF = \frac{1}{2} \bullet \frac{a^{2}}{4} = \frac{a^{2}}{8}.\]
\[3)\ E - центр\ окружности\ AB:\]
\[S_{\text{BEF}} = \frac{\pi R^{2} \bullet 90{^\circ}}{360{^\circ}} = \frac{\pi \bullet a^{2}}{4 \bullet 4} = \frac{\pi a^{2}}{16};\]
\[S_{\text{BF}} = \frac{\pi a^{2}}{16} - \frac{a^{2}}{8} = \frac{a^{2}(\pi - 2)}{16};\]
\[8S_{\text{BF}} = \frac{a^{2}(\pi - 2)}{2} = a^{2}\left( \frac{\pi}{2} - 1 \right).\]
\[Ответ:\ \ a^{2}\left( \frac{\pi}{2} - 1 \right).\]