\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равносторонний;\]
\[O - центр\ опис.\ окружности;\]
\[AB = a.\]
\[Найти:\]
\[S_{\text{BC}}.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[AB = BC = a,\ \ \ \angle A = \angle C = 60{^\circ};\]
\[R = \frac{\text{AB}}{2\sin{\angle C}} = \frac{a}{2\sin{60{^\circ}}} = \frac{a}{\sqrt{3}};\]
\[\angle BOC = \frac{360{^\circ}}{3} = 120{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}BOC:\]
\[S_{\text{BOC}} = \frac{1}{2} \bullet \left( \frac{a}{\sqrt{3}} \right)^{2} \bullet \sin{120{^\circ}} =\]
\[= \frac{a^{2}}{6} \bullet \frac{\sqrt{3}}{2} = \frac{a^{2}\sqrt{3}}{12}.\]
\[3)\ Окружность:\]
\[S_{\text{BOC}} = \frac{\pi R^{2}\alpha}{360{^\circ}} = \frac{\pi \bullet AB^{2} \bullet 120{^\circ}}{360{^\circ}} =\]
\[= \frac{a^{2}\pi}{9};\]
\[S_{\text{BC}} = \frac{a^{2}\pi}{9} - \frac{a^{2}\sqrt{3}}{12} =\]
\[= \frac{4a^{2}\pi - 3a^{2}\sqrt{3}}{36} =\]
\[= \frac{a^{2}\left( 4\pi - 3\sqrt{3} \right)}{36}.\]
\[Ответ:\ \ \frac{a^{2}\left( 4\pi - 3\sqrt{3} \right)}{36}.\]