\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCDEF - правильный\]
\[шестиугольник;\]
\[O - центр\ опис.\ окружности.\]
\[Найти:\]
\[\frac{S_{окр} - S_{\text{ABCDEF}}}{S_{окр}}.\]
\[Решение:\]
\[1)\ ABCDEF - шестиугольник:\]
\[\angle AOB = \frac{360{^\circ}}{6} = 60{^\circ};\]
\[OA = \frac{\text{AB}}{2\sin\frac{180{^\circ}}{6}} = \frac{\text{AB}}{2\sin{30{^\circ}}} = AB.\]
\[2)\ В\ \mathrm{\Delta}AOB:\]
\[S_{\text{AOB}} = \frac{1}{2}AB^{2} \bullet \sin{60{^\circ}} = \frac{AB^{2}\sqrt{3}}{4}.\]
\[3)\ Окружность:\]
\[S_{\text{AOB}} = \frac{\pi R^{2}\alpha}{360{^\circ}} = \frac{\pi \bullet AB^{2} \bullet 60{^\circ}}{360{^\circ}} =\]
\[= \frac{AB^{2}\pi}{6};\]
\[S_{\text{AB}} = \frac{AB^{2}\pi}{6} - \frac{AB^{2}\sqrt{3}}{4} \approx\]
\[\approx AB^{2} \bullet 0,0906;\]
\[\frac{6S_{\text{AB}}}{S_{окр}} = \frac{6 \bullet AB^{2} \bullet 0,0906}{\pi \bullet AB^{2}} \approx 0,173.\]
\[Ответ:\ \approx 17,3\%.\]