\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - квадрат;\]
\[O - центр\ опис.\ окружности;\]
\[AB = a.\]
\[Найти:\]
\[S_{\text{AB}}.\]
\[Решение.\]
\[1)\ ABCD - квадрат:\]
\[AC = \sqrt{AD^{2} + CD^{2}} =\]
\[= \sqrt{a^{2} + a^{2}} = a\sqrt{2};\]
\[BO = AO = \frac{1}{2}AC = \frac{a\sqrt{2}}{2};\]
\[AC\bot BD;\ \ \ \]
\[\angle AOB = 90{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}AOB:\]
\[S_{\text{AOB}} = \frac{1}{2}AO \bullet BO = \frac{1}{2} \bullet \frac{a^{2}}{2} = \frac{a^{2}}{4}.\]
\[3)\ Окружность:\]
\[S_{\text{AOB}} = \frac{\pi R^{2}\alpha}{360{^\circ}} = \frac{\pi \bullet \frac{a^{2}}{2} \bullet 90{^\circ}}{360{^\circ}} = \frac{a^{2}\pi}{8};\]
\[S_{\text{AB}} = \frac{a^{2}\pi}{8} - \frac{a^{2}}{4} = \frac{a^{2}(\pi - 2)}{8}.\]
\[Ответ:\ \ \frac{a^{2}(\pi - 2)}{8}.\]