\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - квадрат;\]
\[AD = 6\ см;\]
\[EF = FM = MN.\]
\[Найти:\]
\[\text{EF.}\]
\[Решение.\]
\[1)\ ABCD - квадрат:\]
\[AF = MD = AE = DN;\]
\[AD = AF + FM + MD;\]
\[AF + EF + AF = 6\]
\[EF = 6 - 2AF.\]
\[2)\ В\ \mathrm{\Delta}AEF:\]
\[\angle EAF = 90{^\circ};\ \ \ \]
\[EF = \sqrt{AE^{2} + AF^{2}} =\]
\[= \sqrt{AF^{2} + AF^{2}} = AF\sqrt{2}.\]
\[\text{AF}\sqrt{2} = 6 - 2AF\]
\[\text{AF}\left( 2 + \sqrt{2} \right) = 6\ \ \ \]
\[AF = \frac{6}{2 + \sqrt{2}}.\]
\[EF = \frac{6\sqrt{2}}{2 + \sqrt{2}} = \frac{12}{2\sqrt{2} + 2} =\]
\[= \frac{6}{\sqrt{2} + 1} = 6\left( \sqrt{2} - 1 \right).\]
\(Ответ:\ \ 6\left( \sqrt{2} - 1 \right)\ см.\)