\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCDEF - правильный\]
\[шестиугольник;\]
\[O - центр\ опис.\ окружности;\]
\[AB = a.\]
\[Найти:\]
\[S;\ CF;\ AC.\]
\[Решение.\]
\[1)\ R = \frac{a}{2\sin\frac{180{^\circ}}{6}} = a;\]
\[OC = OF = R = a;\]
\[AF = BC = AB = a.\]
\[6 \bullet \angle A = (6 - 2) \bullet 180{^\circ}\]
\[6\angle A = 720{^\circ}\ \ \ \]
\[\angle A = 120{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}ABC:\]
\[S_{\text{ABC}} = \frac{1}{2}AB \bullet BC \bullet \sin{\angle B} =\]
\[= \frac{1}{2} \bullet a \bullet a \bullet \sin{120{^\circ}} =\]
\[= \frac{1}{2}a^{2} \bullet \frac{\sqrt{3}}{2} = \frac{a^{2}\sqrt{3}}{4}.\]
\[3)\ В\ \mathrm{\Delta}ACF:\]
\[CF = OC + OF = 2a;\]
\[AC = \sqrt{CF^{2} - AF^{2}} =\]
\[= \sqrt{4a^{2} - a^{2}} = a\sqrt{3}.\]
\[4)\ S = 6S_{\text{ABC}} = \frac{3a^{2}\sqrt{3}}{2}.\]
\[Ответ:\ \ a\sqrt{3};\ 2a;\ \frac{3a^{2}\sqrt{3}}{2}.\]