\[Схематический\ рисунок.\]
\[Дано:\]
\[ABC\ldots - правильный\]
\[восьмиугольник;\]
\[O - центр\ опис.\ окружности;\]
\[R_{опис.\ окр} = R.\]
\[Найти:\]
\[\text{S.}\]
\[Решение.\]
\[1)\ AO = OB = R;\]
\[\angle AOB = \frac{360{^\circ}}{8} = 45{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}AOB:\]
\[S_{\text{AOB}} = \frac{1}{2}AO \bullet OB \bullet \sin{\angle AOB} =\]
\[= \frac{1}{2}R \bullet R \bullet \sin{45{^\circ}} = \frac{R^{2}\sqrt{2}}{4}.\]
\[3)\ S = 8S_{\text{AOB}} = 2R^{2}\sqrt{2}.\]
\[Ответ:\ \ 2R^{2}\sqrt{2}.\]