\[r_{3} = \frac{a}{2\ tg\ \frac{180{^\circ}}{3}} =\]
\[= \frac{a}{2}\ :tg\ 60{^\circ} = \frac{a}{2\sqrt{3}};\]
\[r_{4} = \frac{a}{2\ tg\ \frac{180{^\circ}}{4}} = \frac{a}{2}\ :tg\ 45{^\circ} = \frac{a}{2}.\]
\[1)\ По\ разные\ стороны\ от\ хорды:\]
\[l = r_{3} + r_{4} = \frac{a}{2\sqrt{3}} + \frac{a}{2} = \frac{a + a\sqrt{3}}{2\sqrt{3}};\]
\[l = \frac{a\left( 1 + \sqrt{3} \right)}{2\sqrt{3}} = \frac{a\left( \sqrt{3} + 3 \right)}{6}.\]
\[Ответ:\ \ \frac{a\left( \sqrt{3} + 3 \right)}{6}.\]
\[2)\ По\ одну\ сторону\ от\ хорды:\]
\[l = r_{4} - r_{3} = \frac{a}{2} - \frac{a}{2\sqrt{3}} = \frac{a\sqrt{3} - a}{2\sqrt{3}};\]
\[l = \frac{a\left( \sqrt{3} - 1 \right)}{2\sqrt{3}} = \frac{a\left( 3 - \sqrt{3} \right)}{6}.\]
\[Ответ:\ \ \frac{a\left( 3 - \sqrt{3} \right)}{6}.\]