\[Схематический\ \]
\[Дано:\]
\[ABCD - квадрат;\]
\[BD = AC = 6\sqrt{2}\ см.\]
\[Найти:\]
\[1)\ R;\ \]
\[2)\ r.\]
\[Решение:\]
\[1)\ OA = OB = \frac{1}{2}BD = 3\sqrt{2};\]
\[AC\bot BD;\ \ \ \]
\[\angle AOB = 90{^\circ}.\]
\[2)\ В\ \mathrm{\Delta}AOB:\]
\[\angle AOB = 90{^\circ};\]
\[AB = \sqrt{AO^{2} + BO^{2}} =\]
\[= \sqrt{18 + 18} = \sqrt{36} = 6\ см.\]
\[3)\ R = \frac{6}{2\sin{45{^\circ}}} = 3\ :\frac{\sqrt{2}}{2} = 3\sqrt{2}\ см.\]
\[r = \frac{6}{2\ tg\ 45{^\circ}} = 3\ :1 = 3\ см.\]
\[Ответ:\ \ 1)\ 3\sqrt{2}\ см;\ 2)\ 3\ см.\]