\[Схематический\ рисунок.\]
\[Дано:\]
\[\mathrm{\Delta}ABC - равносторонний;\]
\[BH - высота;\]
\[BH = 15\ см.\]
\[Найти:\]
\[1)\ R;\ \]
\[2)\ r.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[CH = \frac{1}{2}AC = \frac{1}{2}\text{BC.}\]
\[2)\ В\ \mathrm{\Delta}BHC:\]
\[\angle BHC = 90{^\circ};\]
\[BC^{2} = BH^{2} + CH^{2}\]
\[BC^{2} = 225 + \frac{1}{4}BC^{2}\]
\[\frac{3}{4}BC^{2} = 225\ \ \ \]
\[BC^{2} = 300\]
\[BC = 10\sqrt{3}\ см.\]
\[3)\ В\ \mathrm{\Delta}ABC:\]
\[R = \frac{10\sqrt{3}}{2\sin{60{^\circ}}} =\]
\[= 5\sqrt{3}\ :\frac{\sqrt{3}}{2} = 10\ см.\]
\[r = \frac{10\sqrt{3}}{2\ tg\ 60{^\circ}} = 5\sqrt{3}\ :\sqrt{3} = 5\ см.\]
\[Ответ:\ \ 1)\ 10\ см;\ 2)\ 5\ см.\]